Victor De Oliveira

Victor De Oliveira, PhD

Professor, Statistics and Data Science

Contact

Bio

Personal Faculty Website

Dr. Victor De Oliveira is a professor in the Department of Statistics and Data Science in the College of AI, Cyber and Computing. He joined the UTSA faculty in 2006 and previously worked at the University of Arkansas and Simon Bolivar University. He holds a PhD in statistics from the University of Maryland, and a master’s in water resources and a bachelor’s in mathematics from the Universidad Simon Bolivar. He is a Fellow of the American Statistical Association and an Elected Member of the International Statistical Institute. He teaches a variety of undergraduate and graduate courses in Statistics and Applied Probability.

Teaching

  • Advanced inference
  • Simulation and statistical computing
  • Spatial statistics

Research Interests

  • Bayesian Methods
  • Density Ratio Models
  • Environmental Statistics
  • Geostatistics
  • Markov Random Fields
  • Space-Time Modeling
  • Prediction

Degrees

  • PhD University of Maryland
  • MS Universidad Simon Bolivar
  • BS Universidad Simon Bolivar

Publications

  • Widjaja, R., Wu, W., De Oliveira, V. and Ye, K. (2026+), "A Partial Envelope Approach for Modeling Multivariate Spatial-temporal Data," The Canadian Journal of Statistics, to appear.
  • Nguyen, Q.N. and De Oliveira, V. (2026+), "Approximating Gaussian Copula Models for Count Time Series: Connecting the Distributional Transform and a Continuous Extension," Journal of Applied Statistics, to appear.
  • Gu, M. and De Oliveira, V. (2026+), "Prior Distributions for Gaussian Processes in Computer Model Emulation and Calibration." In: Handbook of Statistical Methods for Computer Modeling, D. Bingham, M. Haran, J. Oakley and B. Sanso (eds.) Chapman & Hall/CRC, to appear.
  • Han, Z. and De Oliveira, V. (2025), "Default Priors for the Smoothness Parameter in Gaussian Matern Random Fields," Bayesian Analysis, 20, 1083-1107.
  • Reyna, V., Fathesami, N., Wu, W., Muluk, S.C., De Oliveira, V. and Finol, E.A. (2025), "On The Relative Effects of Wall and Intraluminal Thrombus Constitutive Material Properties in Abdominal Aortic Aneurysm Wall Stress," Cardiovascular Engineering and Technology, 16, 66-78.
  • De Oliveira, V. (2023), "A Simple Isotropic Correlation Family in R^3 with Long-Range Dependence and Flexible Smoothness." In: Research Papers in Statistical Inference for Time Series and Related Models---Essays in Honor of Masanobu Taniguchi, Y. Liu, J. Hirukawa and Y. Kakizawa (eds.), Springer, pp 111-122.
  • De Oliveira, V. and Han, Z. (2023), "Approximate Reference Priors for Gaussian Random Fields," Scandinavian Journal of Statistics, 50, 296-326.
  • De Oliveira, V. and Han, Z. (2022), "On Information About Covariance Parameters in Gaussian Mat\'ern Random Fields," Journal of Agricultural, Biological and Environmental Statistics, 27, 690-712.
  • De Oliveira, V. and Ecker, M. (2022), "A Non--Stationary Non--Gaussian Hedonic Spatial Model for House Selling Prices," Communications in Statistics--Simulation and Computation, 51, 2888-2905.
  • Han, Z. and De Oliveira, V. (2020), "Maximum Likelihood Estimation of Gaussian Copula Models for Geostatistical Count Data," Communications in Statistics--Simulation and Computation, 49, 1957-1981.
  • Canchi, T., Patnaik, S.S., Nguyen, H.N., Ng, E.Y.K., Narayanan, S., Muluk, S.C., De Oliveira, V. and Finol, E.A. (2020), "A Comparative Study of Biomechanical and Geometrical Attributes of Abdominal Aortic Aneurysms in the Asian and Caucasian Populations," Journal of Biomechanical Engineering, 142(6), 061003.
  • De Oliveira, V. (2020), "Models for Geostatistical Binary Data: Properties and Connections," The American Statistician, 74, 72-79.
  • Wu, W., Rengarajan, B., Thirugnanasambandam, M., Parikh, S.A., Gomez, R., De Oliveira, V., Muluk, S.C. and Finol, E.A. (2019), "Wall Stress and Geometry Measures in Electively Repaired Abdominal Aortic Aneurysms," Annals of Biomedical Engineering, 47, 1611-1625.
  • Han, Z. and De Oliveira, V. (2018), "gcKrig: An R Package for the Analysis of Geostatistical Count Data Using Gaussian Copulas," Journal of Statistical Software, 87 (13), 1-32.
  • Parikh, S.A., Gomez, R., Thirugnanasambandam, M., Chauhan, S.S., De Oliveira, V., Muluk, S.C., Eskandari, M.K. and Finol, E.A. (2018), "Decision Tree Based Classification of Abdominal Aortic Aneurysms Using Geometry Quantification Measures," Annals of Biomedical Engineering, 2135-2147.
  • De Oliveira, V., Wang, B. and Slud, E.V. (2018), "Spatial Modeling of Rainfall Accumulated Over Short Periods of Time," Journal of Multivariate Analysis, 166, 129-149.
  • Kedem, B. and De Oliveira, V. (2018), "On Joint Analysis of Testicular Germ Cell Cancer." Journal of Urology and Research, 5(1), 1097.
  • De Oliveira, V. and Kedem, B. (2017), "Bayesian Analysis of a Density Ratio Model," The Canadian Journal of Statistics, 45, 274-289.
  • Chauhan, S.S., Gutierrez, C.A., Thirugnanasambandam, M., De Oliveira, V., Muluk, S.C., Eskandari, M.K. and Finol, E.A. (2017), "The Association Between Geometry and Wall Stress in Emergently Repaired Abdominal Aortic Aneurysms," Annals of Biomedical Engineering, 45, 1908-1916.
  • Han, Z. and De Oliveira, V. (2016), "On the Correlation Structure of Gaussian Copula Models for Geostatistical Count Data," Australian and New Zealand Journal of Statistics, 58, 47-69.
  • De Oliveira, V. and Kone, B. (2015), "Prediction Intervals for Integrals of Some Types of Non-Gaussian Random Fields: A Semiparametric Bootstrap Approach." In: JSM Proceedings, Statistics and the Environment Section. Alexandria, VA: American Statistical Association, pp 2588-2597.
  • De Oliveira, V. and Kone, B. (2015), "Prediction Intervals for Integrals of Gaussian Random Fields," Computational Statistics and Data Analysis, 83, 37-51.
  • Jing, L. and De Oliveira, V. (2015), "geoCount: An R Package for the Analysis of Geostatistical Count Data," Journal of Statistical Software, 63 (11), 1-33.
  • De Oliveira, V. and Trindade, A.A. (2014), "Spatial Statistics." In: Encyclopedia of Social Network Analysis and Mining, R. Alhajj and J. Rokne (eds.) Springer, pp 1976-1990.
  • Raut, S.S., Jana, A., De Oliveira, V., Muluk, S.C. and Finol, E.A. (2014), "The Effect of Uncertainty in Wall Vascular Material Properties on Abdominal Aortic Aneurysm Wall Mechanics." In: Computational Biomechanics for Medicine, B. Doyle, K. Miller, A. Wittek, and P.M.F. Nielsen (eds.) Springer, pp 69-89.
  • De Oliveira, V. (2014), "Poisson Kriging: A Closer Investigation,'' Spatial Statistics, 7, 1-20.
  • De Oliveira, V. (2013), "Hierarchical Poisson Models for Spatial Count Data," Journal of Multivariate Analysis, 122, 393-408.
  • Raut, S.S., Jana, A., De Oliveira, V., Muluk, S.C. and Finol, E.A. (2013), "The Importance of Patient-Specific Regionally Varying Wall Thickness in Abdominal Aortic Aneurysm Biomechanics," Journal of Biomechanical Engineering, 135(8), 081010.
  • Ecker, M.D., De Oliveira, V. and Isakson, H. (2013), "A Note on a Non-stationary Point Source Spatial Model," Environmental and Ecological Statistics, 20, 59-67.
  • De Oliveira, V. (2012), "Bayesian Analysis of Conditional Autoregressive Models," Annals of the Institute of Statistical Mathematics, 64, 107-133.
  • Song, J.J. and De Oliveira, V. (2012), "Bayesian Model Selection in Spatial Lattice Models," Statistical Methodology, 9, 228-238.
  • De Oliveira, V. and Ferreira, M.A.R. (2011), "Maximum Likelihood and Restricted Maximum Likelihood Inference for a Class of Gaussian Markov Random Fields," Metrika, 74, 167-183.
  • De Oliveira, V. (2010), "Objective Bayesian Analysis for Gaussian Random Fields." In: Frontiers of Statistical Decision Making and Bayesian Analysis---In Honor of James O. Berger, M.-H. Chen, D.K. Dey, P. Muller, D. Sun and K. Ye (eds.), Springer, pp 497-511.
  • De Oliveira, V. and Rui, C. (2009), "On Shortest Prediction Intervals in Log--Gaussian Random Fields," Computational Statistics & Data Analysis, 53, 4345-4357.
  • De Oliveira, V. and Song, J.J. (2008), "Bayesian Analysis of Simultaneous Autoregressive Models," Sankhya, 70-B, 323-350.
  • Ecker, M. and De Oliveira, V. (2008), "Bayesian Spatial Modeling of Housing Prices Subject to a Localized Externality," Communications in Statistics--Theory and Methods , 37, 2066-2078.
  • Rui, C. and De Oliveira, V. (2008), "Point and Block Prediction in Log-Gaussian Random Fields: The Non-constant Mean Case," Journal of Statistical Planning and Inference, 138, 2128-2142.
  • De Oliveira, V. (2007), "Objective Bayesian Analysis of Spatial Data with Measurement Error," The Canadian Journal of Statistics, 35, 283-301.
  • Ferreira, M.A.R. and De Oliveira, V. (2007), "Bayesian Reference Analysis for Gaussian Markov Random Fields," Journal of Multivariate Analysis, 98, 789-812.
  • De Oliveira, V. (2006), "On Optimal Point and Block Prediction in Log-Gaussian Random Fields," Scandinavian Journal of Statistics, 33, 523-540.
  • Paez, M.S., Gamerman, D. and De Oliveira, V. (2005), "Interpolation Performance of a Spatio-temporal Model with Spatially Varying Coefficients: Application to PM_10 Concentrations in Rio de Janeiro," Environmental and Ecological Statistics, 12, 169-193.
  • De Oliveira, V. (2005), "Bayesian Inference and Prediction of Gaussian Random Fields Based on Censored Data," Journal of Computational and Graphical Statistics, 14, 95-115.
  • De Oliveira, V. (2004), "A Simple Model for Spatial Rainfall Fields," Stochastic Environmental Research and Risk Assessment, 18, 131-140.
  • De Oliveira, V. (2003), "A Note On the Correlation Structure of Transformed Gaussian Random Fields," Australian and New Zealand Journal of Statistics, 45, 353-366.
  • De Oliveira, V., Fokianos, K. and Kedem, B. (2002), "Bayesian Transformed Gaussian Random Field: A Review," Japanese Journal of Applied Statistics, 31, 175-187.
  • De Oliveira, V. and Ecker, M.D. (2002), "Bayesian Hot Spot Detection in the Presence of a Spatial Trend: Application to Total Nitrogen Concentration in the Chesapeake Bay," Environmetrics, 13, 85-101.
  • Berger, J.O., De Oliveira, V. and Sanso, B. (2001), "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, 96, 1361-1374.
  • De Oliveira, V. (2000), "Bayesian Prediction of Clipped Gaussian Random Fields," Computational Statistics & Data Analysis, 34, 299-314.
  • Holland D.M., De Oliveira, V., Cox, L.H. and Smith, R.L. (2000), "Estimation of Regional Trends in Sulfur Dioxide Over the Eastern United States," Environmetrics, 11, 373-393.
  • De Oliveira, V., Kedem, B. and Short, D.A. (1997), "Bayesian Prediction of Transformed Gaussian Random Fields," Journal of the American Statistical Association, 92, 1422-1433.

  • Kedem, B., De Oliveira, V. and Sverchkov, M. (2017), Statistical Data Fusion, World Scientific.

  • “Approximate Reference Priors for Gaussian Random Fields,” with Z. Han, Scandinavian, Journal of Statistics, Vol. 50, 2023, pp. 296-326.
  • “On Information About Covariance Parameters in Gaussian Matérn Random Fields,” with Z. Han, Journal of Agricultural, Biological and Environmental Statistics, Vol. 27, 2022, pp 690-712.
  • “Models for Geostatistical Binary Data: Properties and Connections,” The American Statistician, Vol. 74, 2020, pp. 72-79.
  • “Spatial Modeling of Rainfall Accumulated Over Short Periods of Time,” with B. Wang and E. Slud, Journal of Multivariate Analysis, Vol. 166, 2018, pp 129-149.
  • “Bayesian Analysis of a Density Ratio Model,’’ with B. Kedem, The Canadian Journal of Statistics, Vol. 45, 2017, pp. 274-289.
  • “Hierarchical Poisson Models for Spatial Count Data,” Journal of Multivariate Analysis, Vol. 122, 2013, pp. 393-408.
  • “Bayesian Analysis of Conditional Autoregressive Models,” Annals of the Institute of Statistical Mathematics, Vol. 64, 2012, pp. 107-133.
  • “Objective Bayesian Analysis of Spatially Correlated Data,” with J. Berger and B. Sanso, Journal of the American Statistical Association, Vol. 96, 2001, pp. 1361-1374.
  • “Bayesian Prediction of Clipped Gaussian Random Fields,” Computational Statistics and Data Analysis, Vol. 34, 2000, pp. 299-314.
  • “Bayesian Prediction of Transformed Gaussian Random Fields,” with B. Kedem and D. Short, Journal of the American Statistical Association, Vol. 92, 1997, pp. 1422-1433.