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Abstract Methods

e A well informed public policy 1s needed. Multilayer Perceptron (MLP) Simple Network
o Artificial Intelligence Models are popular in production, Regressor Adversarial
however there is an increased bias concern. Oc1f B i

o Fair housing price prediction may be accomplished through

bias mitigation.
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become barely accessible.
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e People rely blindly on Al algorithms, forgetting they are and fairness

flawed.

e Researchers have raised concerns towards race and ethnicity
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urban development. . . e .
p Dataset Protected attribute e The initial model presents significant bias on race.

e There have been attempts on mitigating bias using 232.057 houses across San Antonio Two race groups are considered e There 1s some fairness improvement after Adversarial Training.

Correlation Remover and Reduction-based Algorithms with from publicly-available sources. (white vs non-white). e When increasing the adversarial loss weight (), fairness improves but

accuracy of the model is sacrificed.

Results

good results.
MLE | VLERAT (29 Conclusions
Independence 1326 1188 e Adversarial training proves to be an alternative for bias mitigation in
ML models.
1274 1208 e However, fairness improvement is not significant and requires to
sacrifice the model performance.

Sufficiency 1018 115 e For future work it would be recommended to modity the adversarial
model and verify the impact on bias mitigation.

Main Goal , — - —
, o L Table 1. Fairness criterion values for original model and adversarial trained model
e Provide an accurate prediction ot house pricing in References
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Independence: Equality of outcomes/selection

e Improve the regressor model fairness on ethnicity

and race criterion. : . 0
Sufficiency: Choices reflect same accuracy per group (calibration)




